Fecal incontinence

Introduction and epidemiology
Fecal incontinence (FI) is the recurrent uncontrolled passage of fecal material, of 1 month or greater duration, in an individual with a developmental age of at least 4 years. Community-based surveys have fostered increasing awareness of the symptom and its detrimental impact on lifestyle and functioning; these consequences are disproportionately severe compared with the medical consequences of FI (Table 13.1). Physicians may under-recognize the prevalence and devastating consequences of FI, perhaps because patients are often embarrassed to discuss the symptom.

1 Distressing symptom attributable to one or more disordered continence mechanisms.
2 Most patients have internal and/or external sphincter weakness. Rectal sensory disturbances (i.e. increased or reduced) and altered bowel habits (i.e. constipation and/or diarrhea) are also important.
3 Common causes include anal sphincter injury resulting from obstetric or iatrogenic trauma and/or pudendal neuropathy caused by obstetric injury or chronic straining.
4 Patients are often embarrassed to discuss the symptom with a physician.
5 Careful characterization of symptoms is useful for gauging severity, understanding pathophysiology and guiding management.
6 Diagnostic testing is guided by clinical features. Anal manometry and ultrasound are used to evaluate sphincter function and structure, respectively. Endoscopy necessary if mucosal disease process is a consideration.
7 Simple measures are often helpful: empathy, patient education, management of altered bowel habits and biofeedback therapy (for sphincter tone and/or rectal sensation).
8 Long-term success rate after surgical repair of anal sphincter defects is poor. More invasive approaches (e.g. graciloplasty) involve considerable morbidity.
9 Colostomy may be the only option for patients with symptoms refractory to other measures.

Table 13.1 Epidemiology of fecal incontinence

| Prevalence of FI in the community ranges from 2% to 15%. |
| Varying prevalence rates may be attributable to differences in survey techniques, definition of FI and population surveyed. |
| Prevalence is similar in men and women. Prevalence and severity of FI increased with aging; 47% of nursing home residents in one survey had FI. |
| Patients with FI are often embarrassed to discuss the symptom with a physician or friends. |
| FI affects quality of life in >50% of patients. FI may jeopardize employment, and may lead to institutionalization. |
Table 13.2 Anorectal factors maintaining continence

<table>
<thead>
<tr>
<th>Factor (method of assessment)*</th>
<th>Physiological functions</th>
<th>Pathophysiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal anal sphincter (anal manometry)</td>
<td>Smooth muscle responsible for maintaining ~70% resting anal tone. Resting tone is maintained by myogenic factors and tonic sympathetic excitation. Relaxes during defecation.</td>
<td>Resting and squeeze pressures are ↓ in most women with FI. Conversely, high sphincter pressures may hinder evacuation, predisposing to FI in some men. Internal and external sphincter weakness is often caused by sphincter trauma. Obstetric or iatrogenic injuries are common causes of sphincter trauma. Diseases affecting upper or lower motor neuron pathways can also weaken the external sphincter.</td>
</tr>
<tr>
<td>External anal sphincter [anal manometry, anal EMG (for neural integrity)]</td>
<td>Tonicity active striated muscle which predominantly contains type I (slow-twitch) fibers in humans. Maintains ~30% of resting anal tone. Voluntary or reflex contraction (i.e. squeeze response) closes the anorectal canal, preserving continence.</td>
<td>MRI reveals puborectalis atrophy and/or impaired function in a subset of incontinent patients.</td>
</tr>
<tr>
<td>Puborectalis (evacuation proctography, dynamic pelvic MRI)</td>
<td>Maintains a relatively acute anorectal angle at rest. Contracts further to preserve continence during squeeze.</td>
<td>Rectal compliance is ↓ in ulcerative and ischemic proctitis. Rectal capacity is ↓ in ‘idiopathic’ FI.</td>
</tr>
<tr>
<td>Rectal compliance (barostat testing)</td>
<td>By relaxing (i.e. accommodating), the rectum can hold more stool until defecation is convenient.</td>
<td>↓ rectal sensation occurs in FI, may impair evacuation and continence, and can be ameliorated by biofeedback therapy. Rectal sensation may contribute to the symptom of urgency in FI.</td>
</tr>
<tr>
<td>Rectal sensation (perception of latex balloon distension, barostat testing)</td>
<td>Rectal distension evokes the desire to defecate and is also critical for initiating the squeeze response when continence is threatened.</td>
<td></td>
</tr>
<tr>
<td>Anal sensation (electrosensitivity, temperature change)</td>
<td>The exquisitely sensitive anal mucosa will periodically sample and ascertain whether rectal contents are gas, liquid or stool when the anal sphincters relax.</td>
<td>The extent to which normal or disordered anal sampling reflexes contribute to fecal continence or FI respectively are unclear.</td>
</tr>
</tbody>
</table>

*Italics indicate the test is used in research studies but is not widely available or generally used in clinical practice. ↓ = reduced; ↑ = increased.

Mechanisms of normal and disordered continence

Fecal continence is maintained by anatomical factors, rectal compliance and recto-anal sensation (Table 13.2). Anatomical factors include the anal sphincters and levator ani (i.e. the pelvic floor), rectal curvatures and transverse rectal folds (Fig. 13.1). The rectum is a distensible organ that relaxes, allowing defecation to be postponed until convenient. The perception of rectal distension is indispensable for defecation and for voluntary contraction of the pelvic floor when continence is threatened (Fig. 13.2). Moreover, disturbances of stool consistency, mental faculties, and mobility often contribute to FI, particularly in patients who have impaired anorectal continence mechanisms.

Anal sphincter pressures are reduced in most, but not all, incontinent patients. However, anal sphincter pressures do not always distinguish continent from incontinent subjects, underscoring the importance of rectal compliance and sensation in maintaining continence. Impaired rectal sensation allows the stool to enter the anal canal and perhaps leak before the external sphincter contracts. On the other hand, exaggerated rectal sensation, perhaps a marker of coexistent irritable bowel syndrome, is associated
with reduced rectal compliance, repetitive rectal contractions during rectal distension, external sphincter weakness and exaggerated anal sphincter relaxation during rectal distension. Thus, FI is a heterogeneous disorder, patients often suffering from more than one deficit (Table 13.3).

Etiology

FI is attributable to conditions associated with pelvic floor weakness and/or diarrhea (Table 13.4). Before the advent of endoanal ultrasound, unexplained sphincter weakness was considered ‘idiopathic’, or attributed to a pudendal neuropathy. Endoanal ultrasound revealed clinically occult internal and external anal sphincter injury in FI and after vaginal delivery in women. However, the median age of onset of ‘idiopathic’ FI is ~ 61 years; that is, several decades after vaginal delivery. This suggests that, in addition to anal sphincter trauma caused by vaginal delivery, other factors – as yet poorly defined, but including aging, menopause, chronic straining, and disordered bowel habits – probably predispose to FI.

The prevalence of FI increases with age and anorectal functions decline with age. Anal pressures are lower in older than in younger, asymptomatic men and women. It is unknown if these effects are attributable to aging alone and/or hormonal changes associated with aging (e.g. menopause) and/or other confounding factors (e.g. obstetric trauma). Previous studies suggested that anal resting and squeeze pressures were lower in older than in younger subjects. We recently demonstrated that anal resting pressures did, but squeeze pressures did not decline with age in carefully selected asymptomatic women without other risk factors for pelvic floor trauma. The relative sparing of anal squeeze pressures by aging is consistent with the muscle fiber distribution in the human external anal sphincter. The human external anal sphincter predominantly contains type I (i.e. slow twitch) fibers, which, in contrast to type II fibers, are relatively spared by aging. Rectal compliance also declined with age in asymptomatic women. Taken together, the evidence indicates that reduced anal resting pressure and reduced rectal compliance may predispose to FI.

In men, FI is often attributable to local causes, such as anal fistulae, poorly healed surgical scars or proctitis after radiotherapy for prostate cancer. Idiopathic fecal soiling or leakage in men may also be caused by a long anal sphincter of high pressure that entraps small particles of feces during defecation and subsequently
Table 13.3 Anorectal sensorimotor disturbances in fecal incontinence

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Anal sphincter pressures</th>
<th>Threshold for internal sphincter relaxation</th>
<th>Threshold for external sphincter contraction</th>
<th>Rectal sensation*</th>
<th>Rectal compliance</th>
<th>Pelvic floor function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiopathic</td>
<td>↓</td>
<td>↓</td>
<td>↓ or ↑</td>
<td>↓ or ↑</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Diabetes mellitus<sup>39</sup></td>
<td>R ↓; S ↓</td>
<td>↔</td>
<td>NA</td>
<td>↓</td>
<td>↔</td>
<td>NA</td>
</tr>
<tr>
<td>Multiple sclerosis<sup>39</sup></td>
<td>R ↔; S ↓↓</td>
<td>↓</td>
<td>NA</td>
<td>↓</td>
<td>↔</td>
<td>NA</td>
</tr>
<tr>
<td>Elderly patients with fecal impaction and incontinence<sup>40</sup></td>
<td>R ↔; S ↔</td>
<td>↓</td>
<td>NA</td>
<td>↓</td>
<td>NA</td>
<td>↓</td>
</tr>
<tr>
<td>Acute radiation proctitis<sup>41</sup></td>
<td>R ↓; S ↓</td>
<td>NA</td>
<td>NA</td>
<td>↔</td>
<td>↓</td>
<td>NA</td>
</tr>
<tr>
<td>Chronic radiation injury<sup>42</sup></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Ulcerative colitis<sup>43</sup></td>
<td>S ↓ in Fl</td>
<td>↓ (active colitis only)</td>
<td>NA</td>
<td>↑ (active colitis only)</td>
<td>↑ (active colitis only)</td>
<td>NA</td>
</tr>
<tr>
<td>Spinal cord injury – high spinal lesion, i.e. T12 or higher<sup>18</sup></td>
<td>R ↔; S ↓</td>
<td>↓</td>
<td>↔</td>
<td>↓</td>
<td>↑</td>
<td>NA</td>
</tr>
<tr>
<td>Low spinal lesion, i.e. below T12</td>
<td>R ↓; S ↓</td>
<td>↔</td>
<td>↓</td>
<td>↓</td>
<td>↔</td>
<td>NA</td>
</tr>
</tbody>
</table>

Information pertains to patients with underlying disease and FI. ↑ = Increased; ↓ = decreased; ↔ = no change. R = resting; S = squeeze sphincter pressure; NA = not available. *Rectal sensation expressed as volume thresholds for perception; ↑ sensation indicates volume threshold for perception was lower than in normals. Reproduced with permission from Bharucha AE. Fecal incontinence. Gastroenterology 2003; 124: 1672–85.
expels them, causing perianal soiling and discomfort. Approximately 5% of patients develop chronic anorectal complications (fistula, stricture and disabling FI) after pelvic radiotherapy. Surgical procedures that may contribute to FI include sphincterotomy and fistulotomy. Postoperative FI affects about 45% of patients after a lateral internal sphincterotomy; 6%, 8% and 1% reported incontinence to flatus, minor fecal soiling and loss of solid stool, respectively, 5 years thereafter.

The risk of FI after a fistulotomy has been reported to range from 18 to 52%, but is perhaps lower with recent modifications.

Several neurological disorders are associated with FI (Table 13.4). Anal sphincter weakness, diminished rectoanal sensation and diarrhea predispose to FI in patients with diabetic neuropathy. Impairment of anorectal function generally parallels the duration of disease. Fifty-one percent of a group of unselected outpatients with multiple sclerosis had FI. Constipation is the predominant symptom after supraconal spinal cord injury; anal resting pressure is relatively preserved and FI is relatively uncommon. In contrast, resting anal sphincter tone is often reduced in patients with spinal cord lesions at or below T12; reduced anal sphincter tone, blunted recto-anal sensation and laxatives predispose to FI in patients with lumbosacral lesions.

Clinical evaluation

A meticulous clinical assessment is necessary to identify the etiology and pathophysiology of FI, establish rapport with the patient, and guide diagnostic testing and treatment. Terms used to reflect the nature and severity of FI include 'staining', 'seepage' (leakage of small amounts of stool) and 'soiling' (of clothes or bedding).

Table 13.4 Etiology of fecal incontinence

<table>
<thead>
<tr>
<th>Etiology of fecal incontinence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anal sphincter weakness</td>
</tr>
<tr>
<td>Injury: obstetric trauma related to surgical procedures, e.g. hemorrhoidectomy, internal sphincterotomy, fistulotomy, anorectal infection</td>
</tr>
<tr>
<td>Non-traumatic: scleroderma, internal sphincter thinning of unknown etiology</td>
</tr>
<tr>
<td>Neuropathy</td>
</tr>
<tr>
<td>Stretch injury, obstetric trauma, diabetes mellitus</td>
</tr>
<tr>
<td>Anatomical disturbances of the pelvic floor</td>
</tr>
<tr>
<td>Fistula, rectal prolapse, descending perineum syndrome</td>
</tr>
<tr>
<td>Inflammatory conditions</td>
</tr>
<tr>
<td>Crohn's disease, ulcerative colitis, radiation proctitis</td>
</tr>
<tr>
<td>Central nervous system disease</td>
</tr>
<tr>
<td>Dementia, stroke, brain tumors, spinal cord lesions, multiple system atrophy (Shy-Drager syndrome), multiple sclerosis</td>
</tr>
<tr>
<td>Diarrhea</td>
</tr>
<tr>
<td>Irritable bowel syndrome, post-cholecystectomy diarrhea</td>
</tr>
</tbody>
</table>

Scales for rating the severity of FI incorporate the nature and frequency of stool loss, number of pads used, severity of urgency, and the impact of FI on coping mechanisms and/or lifestyle–behavioral changes.\(^{19}\) Quality of life includes not only items connected with coping, behavior, self-perception and embarrassment, but also practical day-to-day limitations, such as the ability to socialize and get out of the house.\(^{20}\) Patients are affected even by the possibility and unpredictability of incontinence episodes. Thus, the type and frequency of incontinence episodes alone may underestimate the severity of FI in people who are housebound because of FI.

The clinical history provides several insights into the pathophysiology of FI (Table 13.5). The importance of carefully characterizing bowel habits cannot be overemphasized. Stool form and consistency can be described by pictorial stool scales.\(^{21}\) The terms ‘urge FI’ and ‘passive FI’ refer to exaggerated and reduced awareness of the desire to defecate before the incontinence episode, respectively.

A multisystem examination should be guided by the history and by knowledge of underlying diseases. The positive predictive value of digital rectal examination for identifying low resting and squeeze pressures is 67 and 81%, respectively.\(^{22}\) A digital rectal examination can also evaluate voluntary puborectalis contraction, manifest as normal upward and anterior movement of the puborectalis (i.e. a 'lift') when the subject squeezes. Examination in the seated position on a commode may be more accurate than the left lateral decubitus position for characterizing rectal prolapse, pouch of Douglas hernia or excessive perineal descent.

Diagnostic testing

The extent of diagnostic testing is tailored to the patient’s age, probable etiological factors, symptom severity, impact on quality of life and response to conservative medical management. The strengths and limitations of these tests have been detailed elsewhere.\(^{7}\) Endoscopy to identify mucosal pathology is probably

Table 13.5 The clinical history in fecal incontinence: insights into pathophysiology

<table>
<thead>
<tr>
<th>Question</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset, natural history and risk factors</td>
<td>Relationship of symptom onset/deterioration to other illnesses may suggest etiology. Natural history may reveal why a patient has sought medical attention.</td>
</tr>
<tr>
<td>Bowel habits/ type of leakage</td>
<td>Semiformed or liquid stools, perhaps resulting from laxative use in constipated patients, pose a greater threat to pelvic floor continence mechanisms than formed stools. Incontinence for solid stool suggests more severe sphincter weakness than incontinence for liquid stool only. Management should be tailored to specific bowel disturbance.</td>
</tr>
<tr>
<td>Degree of warning before FI</td>
<td>Urge and passive FI are associated with more severe weakness of the external and internal anal sphincter, respectively. These symptoms may also reflect rectal sensory disturbances, potentially amenable to biofeedback therapy.</td>
</tr>
<tr>
<td>Diurnal variation in FI</td>
<td>Nocturnal FI occurs uncommonly in idiopathic FI and is most frequently encountered in diabetes and scleroderma.</td>
</tr>
<tr>
<td>Urinary incontinence – presence and type</td>
<td>Association between urinary and FI. Same therapy may be effective for both conditions.</td>
</tr>
<tr>
<td>Evaluate possible causes of FI</td>
<td>Multisystem diseases causing FI are generally evident on a history and physical examination. The obstetric history must inquire specifically for known risk factors for pelvic trauma, e.g. forceps delivery, episiotomy, and prolonged second stage of labor. Medications (e.g. laxatives, artificial stool softeners) may cause or exacerbate FI.</td>
</tr>
</tbody>
</table>

Modified with permission from Bharucha AE. Fecal incontinence. Gastroenterology 2003; 124: 1672–85.
necessary for FI patients with significant, particularly recent-onset diarrhea or constipation. The extent of examination (sigmoidoscopy or colonoscopy) and consideration of mucosal biopsies are guided by the patient’s age, comorbidities and differential diagnosis. The indications for, and extent of, diagnostic testing in FI are evolving. For ambulatory, otherwise healthy patients, anorectal manometry and endoanal ultrasound are useful to document severity of weakness and to identify abnormal sphincter morphology, respectively. Evacuation proctography may be useful to characterize puborectalis contraction, confirm a coexistent evacuation disorder, and/or document the severity of clinically suspected excessive perineal descent or a rectocele. Endoanal MRI is useful for visualizing anal sphincter morphology, particularly external sphincter atrophy (Fig. 13.3), while dynamic MRI can concurrently image the bladder, genital organs and anorectum in real time without radiation exposure (Figs 13.4 and 13.5). However, pelvic MRI is relatively expensive and not widely available. Anal sphincter EMG should be considered for incontinent patients with an underlying disease associated with a neuropathy, such as diabetes mellitus, clinical suspicion of a proximal neurogenic process, or sphincter weakness unexplained by morphology as visualized by ultrasound. Delayed pudendal nerve terminal motor latencies (PNTML) are widely used as a surrogate marker for pudendal neuropathy. Initial studies suggested that patients with a pudendal neuropathy would not fare as well after surgical repair of sphincter defects compared with patients without a neuropathy. However, the accuracy of delayed PNTML as a marker for pudendal neuropathy has been questioned on several grounds. The test measures only conduction velocity in the fastest conducting nerve fibers, and there are inadequate normative data. Test reproducibility is unknown, and sensitivity and specificity are poor. In fact, in contrast to initial studies, recent studies suggest that the test does not predict improvement, or lack thereof, after surgical repair of anal sphincter defects.

Management

The management must be tailored to clinical manifestations, and includes treatment of underlying diseases, and other approaches detailed in Table 13.6.

Modification of bowel habits

Modification of bowel habits by simple measures is often extremely effective in managing FI. By taking loperamide or diphenoxylate before social occasions...
or meals outside the home, incontinent patients may avoid having an accident outside the home and gain confidence in their ability to participate in social activities. The serotonin (5-HT3) antagonist alosetron (Lotronex™, GlaxoSmithKline), available under a restricted use program in the USA, is an alternative option when functional diarrhea cannot be controlled by other agents. Patients with constipation, fecal impaction and overflow FI may benefit from a regularized evacuation program, incorporating timed evacuation by digital stimulation and/or bisacodyl/glycerol suppositories, fiber supplementation, and selective use of oral laxatives, as detailed in a recent review.24

Fig. 13.4 Magnetic resonance fluoroscopic images of the pelvis at rest (a), during squeeze (b), and simulated defecation (c) in a 52-year-old asymptomatic subject after filling the rectum with ultrasound gel. At rest, the pelvic floor was well supported and the anorectal angle measured 126°. Pelvic floor contraction during the squeeze maneuver was accompanied by normal upward and anterior motion of the anorectal junction; the angle declined to 95°. Rectal evacuation was associated with relaxation of the puborectalis, as evidenced by opening of the anorectal junction, widening of the anorectal angle and perineal descent. The bladder base dropped by 2.5 cm below the pubococcygeal line; the 2.8 cm anterior rectocele emptied completely, and was probably not clinically significant; perineal descent (5 cm) was outside the normal range for evacuation proctography. Reproduced with permission from Bharucha AE. Fecal incontinence. Gastroenterology 2003; 124: 1672–85.

Fig. 13.5 Pelvic magnetic resonance fluoroscopic images at rest (a) and squeeze (b) in a 57-year-old-lady with FI. During squeeze, the puborectalis indentation on the posterior rectal wall was exaggerated compared with rest, and the anorectal angle declined from 143° at rest to 90° during squeeze; however, the anal canal remained patent. Reproduced with permission from Bharucha AE. Fecal incontinence. Gastroenterology 2003; 124: 1672–85.
Pharmacological approaches
Phenylephrine, an \(\alpha_1 \)-adrenergic agonist, applied to the anal canal increased anal resting pressure by 33% in healthy subjects and in FI. However, phenylephrine did not significantly improve incontinence scores or resting anal pressure compared with placebo in a randomized, double-blind, placebo-controlled crossover study of 36 patients with FI.25

Biofeedback therapy
Biofeedback is based on the principle of operant conditioning. Using a rectal balloon–anal manometry device, patients are taught to contract the external anal sphincter when they perceive balloon distension. Perception may be reinforced by visual tracings of balloon volume and anal pressure, and the procedure is repeated with progressively smaller volumes. In uncontrolled studies, continence improved in about 70% of patients with FI. Though resting and squeeze pressures increased to a variable degree after biofeedback therapy, the magnitude of improvement was relatively small and not correlated to symptom improvement.26 Perhaps these modest effects are attributable to inadequate biofeedback therapy, lack of reinforcement, and
assessment of objective parameters at an early stage after biofeedback therapy. In contrast, sensory assess-
ments, i.e. preserved baseline sensation and improved sensory discrimination after biofeedback therapy, are
more likely to be associated with improved continence after biofeedback therapy.27

A recent study randomized 171 FI patients to four groups: standard medical/nursing care (i.e. advice only); advice plus verbal instruction on sphincter exercises; hospital-based computer-assisted sphincter pressure biofeedback; and hospital biofeedback plus use of a home EMG biofeedback device.28 Symptoms improved in approximately 50% of patients in all four groups, and improvement was sustained 1 year after therapy. These results underscore the importance pa-
tients attach to understanding the condition, practical advice regarding coping strategies (e.g. diet and skin
care), and nurse–patient interaction.

Surgical approaches
Continence improved in up to 85% of patients with sphincter defects after an overlapping anterior sphinc-
teroplasty. For reasons that are unclear, continence deteriorates thereafter. Less than 50% of patients
are continent 5 years after the operation.29 Dynamic graciloplasty and artificial anal sphincter procedures
are restricted to a handful of centers worldwide and are
often complicated by infections and device problems
which may require reoperation, including removal of
the device. A colostomy is the last resort for patients
with severe FI.

Minimally invasive approaches
Sacral nerve stimulation is an FDA-approved device
that has been implanted in more than 3000 patients
with urinary incontinence in the USA. Observations
from European studies suggest that sacral nerve stimu-
lation augments squeeze pressure more than resting
pressure, may also modulate rectal sensation, and
significantly improves continence.30 Sacral stimula-
tion is conducted as a staged procedure. Patients whose
symptoms respond to temporary stimulation over
about 2 weeks proceed to permanent subcutaneous
implantation of the device. The procedure for device
placement is technically straightforward, and device-
related complications are less frequent or significant
relative to more invasive artificial sphincter devices
discussed above.

Rectal evacuation disorders
Pathophysiology
Rectal evacuation disorders are defined by symptoms
of difficult defecation caused by a functional disorder

Rectal evacuation disorders: key features

1 Normal rectal evacuation involves increased intra-abdominal pressure coordinated with pelvic floor relaxation.
2 Rectal evacuation disorders are defined by symptoms of difficult defecation caused by a functional disorder of the process of rectal evacuation.
3 Most attention has focused on pelvic floor dyssynergia, i.e. impaired relaxation of the puborectalis and/or external anal sphincter during defecation. Other causes include descending perineum syndrome and inadequate propulsive forces.
4 Symptoms: excessive straining and/or anal digitation and/or sense of anorectal blockage during defecation; sense of incomplete evacuation after defecation; infrequent defecation; hard stools.
5 A careful rectal examination is invaluable.
6 Rectal evacuation disorders cannot be distinguished from normal transit or slow transit constipation by symptoms alone.
7 Diagnostic tests: rectal balloon expulsion test (useful screening test); anal manometry; barium proctography; dynamic pelvic MRI.
8 Colonic transit is often delayed in rectal evacuation disorders.
9 Management: pelvic floor retraining by biofeedback therapy, judicious laxative use/ psychological counseling if necessary.
of the process of evacuation. The terms ‘anismus’, ‘pelvic floor dyssynergia’, ‘puborectal spasm’ and ‘descending perineum syndrome’ reflect the phenotypic spectrum of rectal evacuation disorders. Anismus reflects increased anal resting tone, while pelvic floor dyssynergia refers to failure of relaxation or paradoxical contraction of the puborectalis and/or external anal sphincter during defecation. The descending perineum syndrome is a sequel of long-standing, excessive straining, which weakens the pelvic floor causing excessive perineal descent. The fourth subgroup within this spectrum of rectal evacuation disorders includes patients who cannot generate the rectal forces necessary to expel stools.

Most attention has focused on pelvic floor dyssynergia or paradoxical sphincter contraction, which can be demonstrated by anal manometry, anal sphincter EMG or defecography (Fig. 13.6). While paradoxical puborectalis contraction is associated with impaired rectal evacuation, the specificity of this finding has been questioned on two grounds. First, some patients with pelvic floor dyssynergia have normal rectal evacuation. Secondly, pelvic floor dyssynergia has been observed in asymptomatic subjects, and in patients with FI or pelvic pain who do not have symptoms of obstructed defecation. Given the inherent limitations of trying to replicate normal defecation in a laboratory, these inconsistencies are not surprising and they underscore the importance of considering symptoms when diagnosing rectal evacuation disorders.

With the exception of Parkinson’s disease and multiple sclerosis, rectal evacuation disorders are probably not caused by lesion(s) in the central nervous system. Pelvic floor dyssynergia is associated with anxiety and psychological distress. It is conceivable that psychological distress contributes to pelvic floor dyssynergia by increasing the level of skeletal muscle tension.

Up to 60% of patients with pelvic floor dyssynergia have impaired rectal sensation. Since the desire to defecate is essential for initiating defecation, it is conceivable that diminished rectal sensation, perhaps attributable to a neuropathy, may cause obstructed defecation. Alternatively, reduced rectal sensation may be the result of a change in rectal capacity, or it may be

![Fig. 13.6 Pelvic MR fluoroscopic images at rest (a) and evacuation (b) in a lady with obstructed defecation. Observe the increased impression of the puborectalis on the posterior rectal wall during evacuation (white arrow) compared with rest.](image-url)
secondary to retained stool in the rectal vault in obstructed defecation.

Left colonic transit is delayed in up to two-thirds of patients with pelvic floor dyssynergia. It is unclear if delayed left colonic transit is secondary to activation of rectocolonic inhibitory reflexes by stool in the rectum, and/or to physical restriction to passage of stool through the colon, and/or to coexistent colonic motor dysfunction unrelated to obstructed defecation.

Rectal evacuation disorders are primarily attributed to disordered function. However, structural anomalies (e.g. rectoceles and excessive perineal descent) may coexist (Fig. 13.4). Rectoceles are relatively common in older women and infrequently obstruct defecation. On the contrary, clinically significant rectoceles often occur in patients with a primary rectal evacuation disorder and may be secondary to excessive straining.

Perineal descent during defecation is generally reduced in anismus and pelvic floor dyssynergia. However, long-standing, excessive straining can weaken the pelvic floor, causing excessive perineal descent. Reduced perineal descent widens the anorectal angle and impairs the flap valve that normally maintains continence when intra-abdominal pressure increases. Excessive perineal descent has also been implicated as a cause of stretch-induced pudendal neuropathy. These consequences of excessive perineal descent may explain why patients with the descending perineum syndrome have constipation initially, progressing to FI later.

The mechanisms responsible for inadequate rectal propulsive forces are unclear. Increased resting anal pressure. Though normal ranges are age-, gender- and technique-dependent, an average resting pressure greater than 100 mmHg is probably abnormal and suggestive of anismus. Paradoxical increase in anal pressure during simulated defecation. Since paradoxical anal sphincter contraction also occurs in asymptomatic subjects, test results must be considered in the overall clinical context.

Evacuation proctography is useful for documenting impaired evacuation, assessing rectal propulsive forces and manometric, EMG or radiologic evidence of paradoxical contraction, or failed relaxation of the anal sphincter during attempted defecation. The following considerations are pertinent to these assessments.

1. Increased resting anal pressure. Though normal ranges are age-, gender- and technique-dependent, an average resting pressure greater than 100 mmHg is probably abnormal and suggestive of anismus.
2. Paradoxical increase in anal pressure during simulated defecation. Since paradoxical anal sphincter contraction can also occur in asymptomatic subjects, test results must be considered in the overall clinical context.
3. Evacuation proctography is useful for documenting impaired evacuation, assessing the clinical significance of a rectocele and characterizing anorectal descent during simulated evacuation. Another, perhaps under-recognized, benefit of evacuation proctography is the ability to educate patients about the nature of their disorder by reviewing images with them. More recently, rapid MR imaging sequences have been developed to visualize pelvic floor motion in real time without radiation exposure. The bony landmarks necessary to characterize anorectal motion are more readily visualized by MRI compared with evacuation proctography. Dynamic pelvic MRI can also evaluate urogenital and anorectal prolapse during the same examination.
4. The rectal balloon expulsion test (Fig. 13.7). When compared with manometry and evacuation proctography, an abnormal balloon expulsion test was 88% sensitive (positive predictive value of 64%) and
89% specific (negative predictive value of 97%) for diagnosing pelvic floor dyssynergia. Thus, a normal rectal balloon expulsion test is extremely useful for excluding pelvic floor dyssynergia in constipated patients.

- Colonic transit is often delayed in obstructed defecation. Therefore, it is necessary to exclude obstructed defecation before making a primary diagnosis of slow transit constipation in patients with delayed colonic transit (Fig. 13.6).

Management

Pelvic floor retraining by biofeedback therapy is the cornerstone for managing obstructed defecation. In uncontrolled studies, symptoms improved after pelvic floor retraining in 70% of patients with obstructed defecation; controlled studies are in progress. Pelvic floor retraining facilitates pelvic floor relaxation, and improves coordination between abdominal wall and diaphragmatic contraction and pelvic relaxation during defecation. There is limited objective evidence of improved pelvic floor function after biofeedback therapy. The specific protocols for biofeedback training vary between centers. It is important to concurrently address dietary imbalances (e.g., eating disorders) and psychological disturbances during pelvic floor retraining. Since stool size and consistency influence the ease of defecation, fiber supplements and judiciously used osmotic laxatives are often necessary.

Functional anorectal pain

The Rome diagnostic criteria have maintained the historical characterization of functional anorectal pain as levator ani syndrome and proctalgia fugax. The pathophysiology of these disorders is poorly understood. The often-stated differences in the clinical features of these disorders (Table 13.7) may be blurred in clinical practice.

Acknowledgment

This work was supported in part by USPHS NIH grants RO1 HD 38666 and HD 41129.

References

Table 13.7 Comparison of levator ani syndrome with proctalgia fugax

<table>
<thead>
<tr>
<th>Clinical feature</th>
<th>Levator ani syndrome</th>
<th>Proctalgia fugax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence</td>
<td>Relatively common</td>
<td>Extremely rare</td>
</tr>
<tr>
<td>Pathophysiology</td>
<td>Unclear. Has been attributed to striated muscle ‘tension’</td>
<td>Unclear. Smooth muscle spasm has been implicated. Hereditary form associated with internal anal sphincter hypertrophy</td>
</tr>
<tr>
<td>Nature of pain</td>
<td>Relatively chronic, dull, deep-seated rectal pain or urgency, lasting hours</td>
<td>Infrequent episodes (often <5 episodes/year) of relatively sharp, intermittent anal pain lasting seconds to minutes</td>
</tr>
<tr>
<td>Tenderness to palpation of puborectalis</td>
<td>Often present</td>
<td>Absent</td>
</tr>
<tr>
<td>Diagnostic testing</td>
<td>↑ resting anal pressure. Biofeedback therapy may reduce resting anal pressure and reduce pain</td>
<td>Unremarkable</td>
</tr>
<tr>
<td>Psychological issues</td>
<td>Elevated score on hypochondriasis, depression, and hysteria scales of MMPI, i.e. the ‘neurotic triad’ in chronic pain patients</td>
<td>Perfectionistic, anxious, and/or hypochondriacal traits in uncontrolled studies</td>
</tr>
<tr>
<td>Management</td>
<td>Uncontrolled studies – electrogalvanic stimulation, biofeedback therapy, digital massage of levator ani, sitz baths and muscle relaxants</td>
<td>Salbutamol inhalation abbreviated episodes in a controlled trial</td>
</tr>
</tbody>
</table>

↑ = increased; ↓ = decreased; ↔ = no change. MMPI, Minnesota Multiphasic Personality Inventory.

32 Bartolo DC, Read NW, Jarratt JA, Read MG, Donnelly TC, Johnson AG. Differences in anal sphincter function and clinical presentation in patients with pelvic floor descent. *Gastroenterology* 1983; **85**: 68–75.

